Java LibreOffice Programming. Chapter 30. Bar, etc. Charts Draft #2 (20th March 2017)

Part 5: Chart Modules

Chapter 30. Bar, Pie, Area, Line Charts Topics: The Bar Chart;
The Pie Chart; 3D Pie;
Donuts; The Area Chart;
The Line Chart: multiple

lines
This chapter continues using the Chart2Views.java
e>_<amp|e frpm the previous chaptgr, but looks at hpw bar, Example folders:
pie (including 3D and donut versions), area, and line "Chart2 Tests" and

charts can be generated from spreadsheet data. The "Utils"
relevant lines of Chart2Views.java are:

// part of Chart2Views.java

public static void main (String argsl([])

{
XComponentLoader loader = Lo.loadOffice();
XSpreadsheetDocument doc = Calc.openDoc (CHARTS DATA, loader);

GUI.setVisible (doc, true);
XSpreadsheet sheet = Calc.getSheet (doc, 0);

// —---— use different chart templates ----
barChart (doc, sheet); // see section 1
// pieChart (doc, sheet); // section 2

// pie3DChart (doc, sheet); // section 2.1
// donutChart (doc, sheet); // section 2.3

// areaChart (doc, sheet); // section 3

// lineChart (doc, sheet);
// linesChart (doc, sheet); // section 4

// more chart examples
Lo.waitEnter () ;
Lo.closeDoc (doc)

Lo.closeOffice();
} // end of main()

1. The Bar Chart

A bar chart is generated by barChart() in Chart2Views.java using the "Sneakers Sold
this Month" Table from Figure 1.

1 © Andrew Davison 2017

Java LibreOffice Programming. Chapter 30. Bar, etc. Charts Draft #2 (20th March 2017)

A B
N

1 Sneakers Sold this Month
Z Brand MNumber Sold
3 Adidas 25
4 Mew Balance 15
5 Mike 32
6 Reebok 15
7 COther 10
8 Total 100
g

=
=

Figure 1. The "Sneakers Sold this Month™ Table.

The resulting chart is shown in Figure 2.

Sneakers Sold this Month

root [
otrer [0
veco [
New Balance - 18
pacs [>

0 20 40 60 80 100 120

Erand

MNumber Sold

Figure 2. The Bar Chart for the Table in Figure 1.

It's informative to compare the bar chart in Figure 2 with the column chart for the
same data in Figure 2 of Chapter 29. The data bars and axes have been swapped, so
the x-axis in the column chart is the y-axis in the bar chart, and vice versa.

barChart() is:

// in Chart2Views.java
private static void barChart (XSpreadsheetDocument doc,
XSpreadsheet sheet)

{
CellRangeAddress rangeAddr = Calc.getAddress (sheet, "A2:B8");
XChartDocument chartDoc =

Chart2.insertChart (sheet, rangeAddr, "B3", 15, 11, "Bar");

Calc.gotoCell (doc, "Al"™);

Chart2.setTitle(chartDoc, Calc.getString(sheet, "Al"));

Chart2.setXAxisTitle (chartDoc, Calc.getString(sheet, "A2"));
Chart2.setYAxisTitle (chartDoc, Calc.getString(sheet, "B2"));

2 © Andrew Davison 2017

Java LibreOffice Programming. Chapter 30. Bar, etc. Charts Draft #2 (20th March 2017)

Chart2.rotateXAxisTitle (chartDoc, 90);
// rotate vertical x-axis
} // end of barChart ()

Although the axes have been swapped in the chart drawing, the API still uses the
same indices to refer to the axes in XCoordinateSystem.getAxisByDimension(). This
means that "x-axis" is the vertical axis in a bar chart, and "y-axis" the horizontal. This
is most apparent in the last line of barChart():

Chart2.rotateXAxisTitle (chartDoc, 90);

This causes the "x-axis" title to rotate 90 degrees counter-clockwise, which affects the
"Brand" string on the vertical axis of the chart (see Figure 2).

2. The Pie Chart

pieChart() in Chart2Views.java utilizes the "Top 5 States with the Most Elementary
and Secondary Schools" table in "chartsData.ods" (see Figure 3) to generate the pie
chart in Figure 4.

E | F
1 Top 5 States with the Most
Elementary and Secondary Schools
T MNo. of Schools
State (in thousands)
3 California 0.1
4 Texas 6.1
5 | Mew York 49
6 | llingis 44
7] Michigan 41
8 MNational Average 19
9

Figure 3. The "Top 5 States" Table.

Top 5 States with the Most
Elementary and Secondary Schools

Mo. of Schools
(in thousands)

19

m California

M Texas
New York

H |llinois

| Michigan
National Average

3 © Andrew Davison 2017

Java LibreOffice Programming. Chapter 30. Bar, etc. Charts Draft #2 (20th March 2017)

Figure 4. A Pie Chart for the Table in Figure 3.

pieChart() is:

// in Chart2Views.java
private static void pieChart (XSpreadsheetDocument doc,
XSpreadsheet sheet)
{
CellRangeAddress rangeAddr = Calc.getAddress (sheet, "E2:F8");
XChartDocument chartDoc =
Chart2.insertChart (sheet, rangeAddr, "B10", 12, 11, "Pie");
// Pie, PieAllExploded
Calc.gotoCell (doc, "Al"™);

Chart2.setTitle (chartDoc, Calc.getString(sheet, "E1"));
Chart2.setSubtitle (chartDoc, Calc.getString(sheet, "F2"));
Chart2.viewLegend (chartDoc, true);

} // end of pieChart ()

Chart2.setSubtitle() displays the secondary heading in the chart; there's little
difference between it and the earlier setTitle():

// in the Chart2 class
public static void setSubtitle (XChartDocument chartDoc,
String subtitle)
{ XDiagram diagram = chartDoc.getFirstDiagram() ;
XTitled xTitled = Lo.gi(XTitled.class, diagram);
XTitle xtitle = createTitle(subtitle);
if (xtitle != null) {
xTitled.setTitleObject (xtitle);
setXTitleFont (xtitle, "Arial", 12);
}
} // end of setSubtitle ()

The XTitled reference for the subtitle is obtained from XDiagram, whereas the chart
title is part of XChartDocument.

2.1. More 3D Pizzazz

For some reason people like 3D pie charts, so pie3DChart() in Chart2Views.java
produces one (see Figure 5) using the same table as the 2D version.

4 © Andrew Davison 2017

Java LibreOffice Programming. Chapter 30. Bar, etc. Charts Draft #2 (20th March 2017)

Top 5 States with the Most
Elementary and Secondary Schools

No. of Schools
(in thousands)

m California

m Texas
MNew York

o |llinois

M Michigan
MNational Average

Figure 5. A 3D Pie Chart for the Table in Figure 3.

pie3DChart() is the same as pieChart() except that the "ThreeDPie" template is used:

// in Chart2Views.java
private static void pie3DChart (XSpreadsheetDocument doc,
XSpreadsheet sheet)
{ CellRangeAddress rangeAddr = Calc.getAddress (sheet, "E2:F8");
XChartDocument chartDoc =
Chart2.insertChart (sheet, rangeAddr, "B10", 12, 11,
"ThreeDPie") ;

// ThreeDPie, ThreeDPieAllExploded
Calc.gotoCell (doc, "Al"M™);

Chart2.setTitle(chartDoc, Calc.getString(sheet, "E1"));
Chart2.setSubtitle (chartDoc, Calc.getString(sheet, "F2"));
Chart2.viewLegend (chartDoc, true);

: // more code explained in a moment
} // end of pie3DChart ()

The drawback of 3D pie charts is the shape distortion caused by the perspective. For
example, the red segment in the foreground of Figure 5 seems bigger than the dark
blue segment at the back but that segment is numerical larger.

The default rotation of a 3D pie is -60 degrees around the horizontal so its bottom
edge appears to extend out of the page, and 0 degrees rotation around the vertical.
These can be changed by modifying the "RotationHorizontal” and "RotationVertical™
properties of the Diagram service. For example:

// part of pie3DChart() in Chart2Views.java...
XDiagram diagram = chartDoc.getFirstDiagram() ;
Props.setProperty(diagram, "RotationHorizontal", 0);
// no horizontal rotation
Props.setProperty(diagram, "RotationVertical", -45);
// -ve rotates left edge out of page

This changes the pie chart's appearance to be as in Figure 6.

5 © Andrew Davison 2017

Java LibreOffice Programming. Chapter 30. Bar, etc. Charts Draft #2 (20th March 2017)

Top 5 States with the Most
Elementary and Secondary Schools

No. of Schools
(in thousands)

m California

W Texas
New York

M llinois

| Michigan
National Average

Figure 6. A Rotated 3D Pie Chart for the Table in Figure 3.

The easiest way to see the current values for the diagram's properties is to add a call to
Props.showODbjProps() to the code above:

Props.showObjProps ("Diagram", diagram);

2.2. Changing the Data Point Labels

Two problems with Figures 5 and 6 are the small data point labels and their default
font color (black) which doesn't stand out against the darker pie segments.

These issues can be fixed by changing some of the font related properties for the data
points. This means a return to the DataSeries service shown in Figure 7.

DataPointProperties

F ¥
DataSeries {1 XDataSeries
- getDataPointBylndex() ‘ data points
— shown in
some properties; ‘ the chart
many inherited DataPointProperties)

Figure 7. The DataSeries Service and XDataSeries Interface.

The DataPointProperties class appears twice in Figure 7 because it allows the data
point properties to be changed in two ways. The DataPointProperties class associated
with the DataSeries service allows a property change to be applied to all the points
collectively. The DataPointProperties class associated with a particular point allows a
property to be changed only in that point.

6 © Andrew Davison 2017

Java LibreOffice Programming. Chapter 30. Bar, etc. Charts Draft #2 (20th March 2017)

For example, the former approach is used to change all the data point labels in the pie
chart to 14 pt, bold, and white:

// end of pie3DChart () in Chart2Views.java...

// change all the data points to be bold white 1l4pt
XDataSeries[] ds = Chart2.getDataSeries (chartDoc);
Props.setProperty(ds[0], "CharHeight", 14.0);
Props.setProperty(ds[0], "CharColor", Calc.WHITE);
Props.setProperty(ds[0], "CharWeight",
com.sun.star.awt.FontWeight.BOLD) ;

The changes to the chart are shown in Figure 8.

Top 5 States with the Most
Elementary and Secondary Schools

Mo. of Schools
(in thousands)

M California

H Texas
New York

u lllinois

B Michigan
National Average

Figure 8. A 3D Pie Chart with Changed Data Point Labels.

The second approach is employed to emphasize the "National Average" data point
label, which is the last one in the series:

// end of pie3DChart() in Chart2Views.java...

// change only the last data point to be bold white 14pt
XPropertySet props = Chart2.getDataPointProps (chartDoc, 0, 5);
if (props !'= null) {
Props.setProperty(props, "CharHeight", 14.0);
Props.setProperty(props, "CharColor", Calc.WHITE);
Props.setProperty (props, "CharWeight",
com.sun.star.awt.FontWeight.BOLD) ;

This produces the chart shown in Figure 9, where only the National Average label is
changed.

7 © Andrew Davison 2017

Java LibreOffice Programming. Chapter 30. Bar, etc. Charts Draft #2 (20th March 2017)

Top 5 States with the Most
Elementary and Secondary Schools

Mo. of Schools
(in thousands)

M California

M Texas
New York

H |llinois

W Michigan
Mational Average

Figure 9. A 3D Pie Chart with One Changed Data Point Label.

Chart2.getDataPointProps() takes three arguments — the chart document, the index of
the data series, and the index of the data point inside that series. The pie chart uses six
data points, so a valid index will be between 0 and 5.

If a matching data point is found by Chart2.getDataPointProps() then a reference to its
properties is returned, allowing that point to be modified:

// in the Chart2 class
public static XPropertySet getDataPointProps (
XChartDocument chartDoc,
int seriesIdx, int idx)
{ XPropertySet[] propsArr =
getDataPointsProps (chartDoc, seriesIdx);
if (propsArr == null)
return null;

if ((idx < 0) || (idx >= propsArr.length)) {
System.out.println ("No data at index " + idx +
"; use 0 to " + (propsArr.length-1));
return null;
}
return propsArr[idx];
} // end getDataPointProps ()

A two-argument version of Chart2.getDataPointProps() returns the properties for all
the data points in a series:

// in the Chart2 class
public static XPropertySet[] getDataPointsProps (
XChartDocument chartDoc, int seriesIdx)

// get all the properties for the data in the specified series
{

XDataSeries[] dataSeriesArr = getDataSeries (chartDoc);

if ((seriesIdx < 0) || (seriesIdx >= dataSeriesArr.length)) {

System.out.println("Series index is out of range");

8 © Andrew Davison 2017

Java LibreOffice Programming. Chapter 30. Bar, etc. Charts Draft #2 (20th March 2017)

}

return null;

}

ArrayList<XPropertySet> propslList =
new ArrayList<XPropertySet>();
int idx = 0;
XPropertySet props = null;
do {
try {
props = dataSeriesArr[seriesIdx].getDataPointByIndex (idx++) ;
if (props != null)
propsList.add (props);
}

catch (com.sun.star.lang.IndexOutOfBoundsException e) {

break;
}
} while (props != null);
if (propslList.size() == 0) {
System.out.println ("No Series at index " + seriesIdx);

return null;
}
XPropertySet[] propsArr = new XPropertySet|[propsList.size()];
for (int i=0; i < propsList.size(); 1i++)
propsArr[i] = propsList.get(i);
return propsArr;
// end getDataPointsProps ()

Chart2.getDataSeries() is called to get the data series for the chart type as an array.
This array is iterated over, collecting the property sets for each data point by calling
XDataSeries.getDataPointByIndex().

2.3. Anyone for Donuts?

If a table has more than one column of data then a "Donut" chart can be used to show
each column as a ring.

donutChart() in Chart2Views.java utilizes the "Annual Expenditure on Institutions"
table in "chartsData.ods™ (see Figure 10) to generate the donut chart with two rings in

Figure 11.
A | E | C

43 | Annual Expenditure on Institutions

44 Country Expenditure/Student. GDP %
45 | Mexico 15 9
46 | Korea 3.9 15
47 | Japan 6 26
48 | Canada) 28
49 | Switzerland 9 29

50 United States 7.8 35

51

52

Figure 10. The "Annual Expenditure on Institutions™ Table.

9 © Andrew Davison 2017

Java LibreOffice Programming. Chapter 30. Bar, etc. Charts Draft #2 (20th March 2017)

Annual Expenditure on Insfitutions

Outer: Expenditure/Student
Inner: GDP %

m Mexico

u Korea
Japan

B Canada

B Switzerland
United States

Figure 11. A Donut Chart for the Table in Figure 10.

donutChart() is:

// in Chart2Views.java
private static void donutChart (XSpreadsheetDocument doc,
XSpreadsheet sheet)
{ CellRangeAddress rangeAddr = Calc.getAddress (sheet, "A44:C50");
XChartDocument chartDoc =
Chart2.insertChart (sheet, rangeAddr, "D43", 15, 11, "Donut");
// Donut, DonutAllExploded, ThreeDDonut
Calc.gotoCell (doc, "A48");

Chart2.setTitle (chartDoc, Calc.getString(sheet, "A43"));
Chart2.viewLegend (chartDoc, true);

Chart2.setSubtitle (chartDoc, "Quter: " +
Calc.getString (sheet, "B44"™) + "\n" +
"Inner: " + Calc.getString(sheet, "C44"));

} // end of donutChart ()

The only thing of note is the use of a more complex string for Chart2.setSubtitle() to
display information about both rings.

3. The Area Chart

areaChart() in Chart2Views.java utilizes the "Trends in Enrollment in Public Schools
in the US™ table in "chartsData.ods" (see Figure 12) to generate the area chart in
Figure 13.

10 © Andrew Davison 2017

Java LibreOffice Programming. Chapter 30. Bar, etc. Charts Draft #2 (20th March 2017)

E | F | G

43 Trends in Enrollment in Public Schools in the US
44 | No. of Students (in thousands)

45 “ear Public Private
46 | 1970 45.9 513
_47 | 1950 40.1 454
48 | 1990 412 46.4
49 | 1995 445 50.5
50 | 1999 46.9 53

51 2000 47.2 631l

52

Figure 12. The "Annual Expenditure on Institutions"” Table.

Trends in Enrollment in Public Schools in the US

B Public
H Private

Mo of Students (in thous ands)

1970 1980 1990 1995 1999

Year

Figure 13. An Area Chart for the Table in Figure 12.

areaChart() is:

// in Chart2Views.java
private static void areaChart (XSpreadsheetDocument doc,
XSpreadsheet sheet)

{
CellRangeAddress rangeAddr = Calc.getAddress (sheet, "E45:G50");
XChartDocument chartDoc =

Chart2.insertChart (sheet, rangeAddr, "A52", 16, 11, "Area");
// Area, StackedArea, PercentStackedArea

Calc.gotoCell (doc, "A43");

Chart2.setTitle (chartDoc, Calc.getString(sheet, "E43"));
Chart2.viewlLegend (chartDoc, true);
Chart2.setXAxisTitle (chartDoc, Calc.getString(sheet, "E45"));
Chart2.setYAxisTitle (chartDoc, Calc.getString(sheet, "F44"));
Chart2.rotateYAxisTitle (chartDoc, 90);

} // end of areaChart ()

If the "Area" template is replaced by "StackedArea" or "PercentStackedArea" then
the two charts in Figure 14 are generated.

11 © Andrew Davison 2017

Java LibreOffice Programming. Chapter 30. Bar, etc. Charts Draft #2 (20th March 2017)

Trends in Enroliment in Public Schools in the LIS

120

E u Private
E B Puble
3
&
Z
1570 1580 1550 1 15955
Vs
StackedArea
Trends in Enroliment in Public Schools in the US
B3% 53% 53% B3 53%
100%
i
BlRG
E 0%
E w%
a
£ oo " Prreate
E B Publc
- 4
]
= s
£ 2%
10%
[
1570 168 1690 1955 1559
fdr
PercentStackedArea

Figure 14. Stacked and Percentage Stacked Area Charts for the Table in Figure 12.

4. The Line Chart

linesChart() in Chart2Views.java utilizes the "Trends in Expenditure Per Pupil” table
in "chartsData.ods" (see Figure 15) to generate two lines marked with symbols in
Figure 16.

12 © Andrew Davison 2017

Java LibreOffice Programming. Chapter 30. Bar, etc. Charts Draft #2 (20th March 2017)

E | F | G

_ % | Trends in Expenditure Per Pupil

27 School Year Unadjusted Dollars | 2001-02 Dollars
_28 | 1961-62 $600 $2.300
_ 29 | 1970-71 $1,000 $4.000
30 | 1850-81 $2,400 $5,000
31 1935-36 $3,900 $5.500
32 | 1980-91 $5.,000 $6.300
33 | 1995-96 $5,700 $6.500
34 | 1096-97 $5.500 $6.600
35 | 1997-98 $6,200 $7.000
36 | 1993-99 $6,600 $7.100
37 | 1868-2000 $7,000 $7,150
38 | 2000-01 $7,200 $7.250

39 2001-02 $7,300 $7,300

40

Figure 15. The "Trends in Expenditure Per Pupil” Table.

Trends in Expenditure Per Pupil
$8,000

$7.000
$6,000
$5.000

$4,000 == |nadjusted Dollars

=== 2001-02 Dollars
$3,000

Expenditure per Pupil

$2,000

$1,000

1970-71 1985-86 1995-96 1997-98 1999-2000 2001-02
1961-62 1980-81 1990-91 1996-97 1998-99 2000-01

School Year

Figure 16. Line Charts for the Table in Figure 15.

linesChart() is:

// in Chart2Views.java
private static void linesChart (XSpreadsheetDocument doc,
XSpreadsheet sheet)
{
CellRangeAddress rangeAddr = Calc.getAddress (sheet, "E27:G39");
XChartDocument chartDoc = Chart2.insertChart (sheet,
rangeAddr, "A40", 22, 11, "LineSymbol");
// Line, LineSymbol, StackedLineSymbol
Calc.gotoCell (doc, "A26");

Chart2.setTitle (chartDoc, Calc.getString(sheet, "E26"));
Chart2.viewLegend (chartDoc, true);

Chart2.setXAxisTitle (chartDoc, Calc.getString(sheet, "E27"));
Chart2.setYAxisTitle (chartDoc, "Expenditure per Pupil");
Chart2.rotateYAxisTitle (chartDoc, 90);

Chart2.setDataPointLabels (chartDoc, Chart2.DP NONE) ;

// too crowded for data points
} // end of linesChart ()

13 © Andrew Davison 2017

Java LibreOffice Programming. Chapter 30. Bar, etc. Charts Draft #2 (20th March 2017)

Chart2.setDataPointLabels() switches off the displaying of the numerical data above
the symbols so the chart is less cluttered

There are many different line chart templates, as listed in Table 1 of Chapter 28. The
"Line" template differs from "LineSymbol" by not including symbols over the data
points.

14 © Andrew Davison 2017

